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Hyperbolic Conservation Laws

%—I—V-f(c;x,t) =r(c;x, 1)

Examples:

e Advection-reaction equation

o, C;
ot

+ V- (ug) = Fi(er,c2,00y¢n), 1=1,...,n

e Kinematic wave (Saint-Venant) equation

oc
E + V- q(c) = r(x,t)
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Sources of Uncertainty in Reactive Transport

Homogeneous & heterogeneous chemical reactions between n species
Al,AQ, c. ,Ani

041141 + OéQAQ + ...+ ()émAm\:\()ém+1Am_|_1 + ...+ OznAn

Model: Concentrations c¢;(x,t) = [A;] satisfy a system of ADR egs.

8 C;
ot

Sources of uncertainty:
e Reaction paths, Fj(ci,ca, ..., Cn)

+V - (ug) =V - (D;Veg) + Fi(er,c2y.000¢n), 1=1,....n

e Flow velocity, u(x,t)

e Reaction rate constants, x;(x)
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Parametric Uncertainty in Chemical Reactions

Transport equation for aAd = A,):

% — V. (DVe) — V- (ue) + afalc),  fa=—k(c® —C2)

e Reaction rate k(x)

e Random field k(x,w)

e Governing equation becomes stochastic

e Solutions are given in terms of PDFs
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Stochastic Methods for Parametric UQ

e (Brute-force) Monte Carlo simulations
— Convergence rate (CR): 1/v'N

e Accelerated Monte Carlo methods
— Quasi MC (QMC)
— Markov chain MC (MCMC)

e Numerical methods for SPDEs
— Stochastic finite elements (polynomial chaos expansions)

— Stochastic collocation

e Mode-reduction methods
— Fokker-Planck equations & PDF equations

— Moments equations
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PDF Methods

e Motivation

— To avoid the linearization of f,(c)
— To obtain complete statistics
— To develop an efficient & accurate tool for UQ

e Raw distribution:

II(c,C;x,t) = dle(x,t) — C]
e Probability density function (PDF):

p(C;x,t) = (Il(c, C; x, 1))

Indelman and Shvidler (1985); Pope (1981)
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Advective-Reactive Transport

Start with advective transport for oA = Ay,

86_

a_—v-(uc)jLOéfa(C), fo=—k(c* - Cg)

€q

Deal with diffusion later,

% =DV?c—V - (uc) +afa(c),  fa=—k(c*—C%)

Sources of uncertainty / random fields, u = u(x,t;w) & k = k(x;w)
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Reactive Transport in “Homogeneous” Media

Physical homogeneity: u is deterministic (certain)

Chemical heterogeneity:

pr(k) =

1 (Ink + 02/2)"
exX —
aro? T 202

Reynolds decomposition

k(z) =k[1+ r(x)], k=0, k(z)k(z") = o2pp(z — )

PDF solution

pe(c;a,t) ~ p(Kst), /C(t):/O k(t))dt!
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Reactive Transport in Uncertain Velocity Field

Uncertain velocity u(x;w) and reaction rate constant x(x;w)

e Transport equation for A = A(:

oc o o
5=~ Vetafale),  fo= k(e —C)

~

e Stochastic PDE for the raw distribution in R*: X = (21, 22, 23, C)T
o1l ~ .
E = V- (UH) u = (ulv U2, U3, fa)T

e Deterministic PDE for PDF

op ou;p 0 |~ Op
- | D=
(9?5 (9537, + (9533 [ ‘78%]
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Concentration PDF

JCH, 2011
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Advective-Diffusive Transport

oc
% DV2e—V.
oy c (uc)

Random velocity field, u = u(x, t; w)

Correlation length and time scales [;; and 7;;
Advection time-scale: 7, = £,/ [u|
Diffusion time-scale: 7p = {¢p/D

Péclet number: Pe = tp /1,
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General Approach

Map p.(1;%x,t) onto two observables:

e center of mass of the plume, m(t)

e width of the plume, k(t)

Particle trajectories x(t) satisfy a Langevin equation

T wupe(t). 1]+ £0). (D& (1) = 2D,50(t 1)

Note that m(t) = (x(¢))e

GRL, 2010
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Stochastic Mapping

An alternative form of the Langevin equation

dx(t) _ dm(?)

SR =yt ), v(t) =2 a(t) = su(t) + £(t)

Assumption: 1(t) is Gaussian
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Statistics of Velocity Fluctuations 7(t)

For a given realization of u(x, 1),
e Mean: (n(t))e =0
e Covariance: C,Z?j(t, t/) — 2D135235(t — t,) —+ <5ui(t)5uj(t’)>5

Spread of the plume is given by

t t

ki (t) = / dt’ / dt"C (', ")

0 0

= UCSD



Concentration mapping

c(x,t) =

exp { —5[x — m(t)|x(t) " [x — m(#)]}

v/ (27)ddetk(t)

Simplifying assumptions:
e Fluctuations of k(t) < fluctuations of m(¢), s.t., k(t) ~ K(t)

e m(t) is Gaussian
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Concentration PDF

pé (ﬂ) ;xl’t)

r1 = 10%l and t = 10257, for 02 = 1071
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Parametric Uncertainty in Kinematic Wave Eq.

Kinematic wave (Saint-Venant) equation

dc  Oq

E%—%:r(m,t), qg=act’P

Sources of uncertainty

e surface slope and resistance, a = a(x)
e measure of turbulence,

e sources, 7(x,1)

e initial and boundary conditions
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CDF Equations

Cumulative density function (CDF),

M(Q;z,t) =H[Q —q(z,t)],  (Q;z,t) = Fy(Q; )

A raw CDF equation,

81_[ oIl oIl
> 8x +r(x,t)=—= =0

B—1
51()Q 0

An effective CDF equation,

OF,
E + Veff ° VXFQ = VX . (DVXFQ)
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CDF Solutions

4 MCS 4 MCS 4 MCS

1.0} === Delta E 1.0} wmm—— Delta E 1.0} wmm— Delta
= = = CLT = = = CLT === CLT
Im | m Steady
1 AAAAARA SR 1

081 b 081
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t =0.0018 A

0.4r b 0.4r
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Flow rate CDF computed with MCS, the white noise v approximation (Delta), and
the CLT-based approximation (CLT).
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Conclusions

e While standard techniques for uncertainty quantification typically
yield only concentration’'s mean and variance, the proposed
approach leads to its full probabilistic description.

e The shape of the PDF changes with time, varying between the
known initial and steady-state distributions. This makes reliance
on assumed PDFs problematic.

e PDF methods provide a computationally efficient means for
uncertainty quantification.

This research was supported by DOE ASCR, Appl. Math.
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Quantification of Model Uncertainty

Master equation: PDF of collisions between the molecules of A;

Modified Gillespie algorithm: PDF P(r, u) for reaction i to occur in
time interval [t + 7,t 4+ 7 + A7] given a certain state at time ¢.

Residence time 7, during which no reactions occur, depends upon
the total molecular population of all reacting species and reflects the
randomness of collisions.

A constant deterministic 7 corresponds to standard reaction rate
equations

dC;
dt

ZFi(Cl,CQ,...Cn), 1= 1,...,n

WRR, 2007
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Example: Neptunium lon Exchange

Reacting system:

NpO;_ + {tAl — Na} — {tAl — NpOo} + NaT
{tAl — NpOsy} + NaT = NpO;_ + {tAl — Na}
ca?t + 2{tAl — Na} — {2tAl — Ca} + ONa™T

{2tAl — Ca} + oNat = ca®t + 2{tAl — Na}

Standard deterministic model (rate equations):

dCy L 2 2

F = — 10104 + k2C2C3 — 2k301 06 + 2]{340205,

A2 1 i Cy — ko CoC 2 2

4 — F1C1C0s — kaCo 3+ 2k3C1Cg — 2k4C5C,

dCsy dCy

dC dc

d—t5 = kBC%CG - ’<J4C§C5a —6 _k30%06 + ’f4C%C5

dt



Neptunium lon Exchange: UQ
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Neptunium lon Exchange: UQ

Distribution coefficient K; = C3/Cy:

3.52 3.54 3.56 3.58 3.5 4 45 5 . 25 3 35 4 45
Distibution Coefficient Kd Distibution Coefficient Kd Distibution Coefficient Kd

Parametric U Model U Joint U

Reactive transport (instantaneous adsorption):

oC ~ 1 —w
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