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Motivation
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New Data: What is the experimental scenario that can provide the most
informative measurements to calibrate our model? (Calibration)

Legacy Data: What can we say about the relation between the legacy data
and our model? (Verification and Validation)
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Sequential Experimental Design

Sequential Experimental Design

@ Experiment: new data collected
according to the strategy obtained
in the previous design stage.

r(uv 97 Ey 55) =0
d= d(u7 07 Ev eS)

@® Inference: the newly obtained

measurements are used to update
Inference Updated pdf of the pdf of model parameters

model parameters
(Bayes rule).

Note that since the next design depends on the previous experiments, it does not
guarantee to find the optimal N designs among all possible combinations of N designs. J

Prior
information

Measurements

- @® Design: the best design is chosen

e . P

PiEEss by maximizing the expected
Shannon information gain.

Experimental
Scenario

Sn = {51*7@7,&;}
Dn= {817827"'7&"}
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Inference Stage and Stopping Criteria

When to stop the experimental process?

@ Desired precision in the estimation of

Sequential Bayesian Inference: model parameters has been reached

pP(Dx|0)p(0)

POID) = ==5D0) det|E[6 — 8 | Dy]| < Poons
_ p(dy, Dy—1|0)p(6)
B p(&,,, Dn—1) @® The reduction in the parameters
P(dn|Da_1, 6, £*)p(Da—1|0)p(6) uncertainty has slowed enough

p(dn| D1, &5)p(Dn1)

i (pei0y) = .. 2 1(peI0)

Computational aspects: Multilevel MCMC ® |Indication exists that model predictions
(Cheung and Beck 2008) available in the and experimental observations are in
statistical library QUESO (Prudencio and disagreement

Schulz 20017)

{Da(pe10)IpEID-1)) . 0}
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Optimal Experimental Design Stage

Objective of the experiment is to learn about the model parameters 0 (Lindley 1956):

& = arg max [ U(dr,€)p(dnIDn1. &),
£,€2 Jp

Eq,[U(dn,&)]

Predictive distribution of observables:
P(AhlDn-1.€,) = [ p(ehl6.€,)p(6]Dr1)d0

Utility function for our objective:

U €)= 11 (p(010,-1) ) ~ 11(p(01r-1.n))

Shannon’s measure of information (Shannon 1948):

#(p(01011)) = [ p(010s-1)10ap(01D;-1)a0

Note: when the purpose of the experiment is other than learning about model parameters, i.e.

accurate prediction of a quantity of interest, then other utility function may be defined (Chaloner and
Verdinelli 1995).
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Information-theoretic Interpretation

Optimal experiment is obtained by solving:
&n =arg max Eq,[U(dn, &,)]

Information-theoretic interpretation (Paninski 2005, Terejanu et al. 2011):

O,dn Dn— rSn
Eq,[U(dn, &,)] = /D /@ p(0,dn|Dn—1, €,) log p(G\pD(,,_1)p|( dnlbf_f c )deddn
~ D (p(e,dnwnq,sn) ‘ P(6]Da1)P(dn|Do_1, en))

=1(0;dn|Dn—1,€,)

Mutual Information:

® quantifies the reduction in uncertainty that knowing either variable provides about the other
(Cover and Thomas 1991)

® provides a measure of statistical dependence between the two random variables, (connection
with copula functions, see Calsaverini and Vicente 2009)

€: = arg gng)é 1(9; dn‘Dn—1 5 En)
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Estimating Mutual Information from Samples

I(X1;X2) = H(X1) —+ H(Xg) — H(X1,X2) J

Kazachenko-Leonenko estimator for differential Kraskov estimator for mutual information:

Shannon entropy: XA
1 N X ) . . . °
H(X) = — /p(x) log p(x)dx ~ N ; logp(x;) oi 1 . El)
1N i . ol o
p(x) ~ N ; a(x = x) i .
! X

Estimate log p(x;) using the distance, €(i), from x;

to its knn (using L-infinity): Different distance scales — different biases which

would not cancel. Do not have to fix k when
estimating entropy of marginals.

N
d
H(X) =~ —¢(k) + ¢¥(N) + — log e(i
(X) & ~k) + %) N; o<(i) 10815 3e) 2 w(0) = B (g 1) + (g + 1)) + w(N)
Note: small k yields a small bias and large variance, and a large k yields a large bias and a small J
variance
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Proof of Concept

Consider the model: ) )
Measurements generating using:

d = 0£+6 2 + f(€)e, e ~ N(0,1
1€ + 026" + £(£) (0,1) 015 0h—35
f&) = 05011 -[]), £e[-1,1]
e R« <o
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Comparison of design strategies:
® |M - Information Maximization sampling
® ME - Maximum Entropy sampling (Sebastiani and Wynn 1997)
® RND - Random sampling
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Proof of Concept: After calibration

P(0, 1D,)
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Graphite

SRI Experimental Setup

Graphite sample  Sample holder

Microwave Discharge
( Gas Inlet )
1st Titration & Furnace
Pressure Ports Mass-Spectrometer Port
Quartz Tube
(To Vacuum System)

2nd Titration &
Presrure Ports

| FNg,in P4 XN’1 At Ls | Ame P> |
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Graphite Nitridation Model

Hagen-Poiseuille flow model:

pap _ _ 128, 14y, AT (2)
& et Wi,
Mean velocity profile:
4.0my,
v(z) = ——2 _
@ p(2)mdg?

Ideal gas density profile:

P(2) Wy,
— 2
pl2) = —pr

N-atom concentration profile:

dv(z)Cn) _ _ an(Mwn(T)Cn

dz et

Zs+Ls
AMg = (AtrdsampieWe) / Cn(@)/T(2)Bndz
z=zg

— 2k(T)Cn, Cay

Sutherland’s model for viscosity:
iy = monng, (o ) (75)"°
Reaction rate for gas phase recombination:
k(T) = Annexp [*EE’QI*FN]
Reaction coefficient with the wall:
w(T) = w(Ten) ()

Thermal velocity:

w(T) = (27rWN)

Mass loss of carbon:

Wy
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Graphite Nitridation - Simulated Measurements

0, . . . . . 4 . . . . .
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IM - Information Maximization sampling
ME - Maximum Entropy sampling

ASC - The design sequence is given by the order of the measurements presented in Ref.
Zhang, Pejakovic and Marschall 2009
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Graphite Nitridation

Simulated Measurements: After calibrations
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Graphite Nitridation

Real Measurements: Carbon Nitridation
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Real Measurements: After calibrations

~ 40 —~ 60, —~ 100,
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Conclusions

Bayesian experimental design equivalent with an
information-theoretic sensitivity analysis.

Optimal design provides the highest statistical dependence
between model parameters and observables.

Information maximization sampling is more general that the
maximum entropy sampling and more efficient that random sampling.

Decreasing trend in entropy indicates that the uncertainty of model
parameters is reduced with additional measurements.

The trend in the Kullback-Leibler divergence may signal the existence
of conflicting information between model predictions and
measurements.
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Conclusions

Modelers Experimentalists

Why Can't We Be Friends?

We need more tools like
Optimal Experimental Design

Computational

Scientists Decision Makers
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Conclusions

Thank you!

Questions?
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