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Requirements m
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— Incrementally scalable Key table sizes (final data release)

— Reliable and available Table  rows footprint

— Low cost Object 26 billion | 48TB
Source 2.1 trillion | 1.3PB

~50 interactive and 20 complex

queries

— Interactive: <10sec
— Object-based: <1h
— Source-based: <1d
— ForcedSource-based: <7d




Baseline Architecture m

— MPP RDBMS on shared-nothing commodity cluster

— Data clustered spatially and by-time, partitioned w/overlaps
— Two-level partitioning
— 2"d Jevel materialized on-the-fly
— Transparent to end-users

— Selective indices to speed up interactive queries,
spatial searches, joins including time series analysis

— Shared scans

— Custom software based on open source
RDBMS (MySQL) + xrootd
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Qserv Implementation m—

Intercepting user queries

Worker dispatch, query
fragmentation generation,
spatial indexing, query
recovery, optimizations,
scheduling, aggregation

Communication,
replication

User

Metadata, result cache

proxy

(serv-master

MySQL dispatch, shared
scanning, optimizations,
scheduling

gserv-ofs

Single node RDBMS

.........




Qserv Fault Tolerance 157'
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* Components replicated * Narrow interfaces
* Failures isolated e Logic for handling errors
* Logic for recovering from errors

Auto-load balancing user

between MySQL servers,
auto fail-over

=
qserv-master m

Query recovery

Worker failure recovery

—

Redundant workers.
Carry no state.

Two copies of data
on different workers




Partitioning/Spatial Queries m

Spatial partitions

- Interactive small radius cone searches, near neighbor correlations O(N?) -> O(kN)

Large number of partitions
— increases potential for parallelism
— simplifies rebalancing when adding/removing nodes.
— speeds up near neighbor correlations

— increases overhead

Two level partitioning on (a, 6) with overlap
— coarse partitions are unit of distribution across workers
— Fine partitions are materialized on the fly
— Partitions overlap so near neighbor queries avoid inter-worker communication
— Fine partitions provide (coarse) spatial index for small radius cone searches




Status m

Scaling tests: 150 nodes, 2e9 objects, 55e9 sources (~32TB)

— ~4-9s: object retrieval, small area spatial search, object time series
— ~3-8m: full sky filter, densities (scans)
— ~10m - 5h: near neighbor, sources not near objects (joins)

— Shared scans
— User tables, cross-match
— Support for updates
Future Plans — Query fault tolerance
— Partition management
— Usability improvements
— Authentication and authorization
— Resource management
— sciSQL: HTM and other UDFs?

Qserv docs: http://dev.Isstcorp.org/trac/wiki/dbScalableArch
Qserv code: http://dev.Isstcorp.org/trac/browser/DMS/qgserv

sciSQL code: https://launchpad.net/scisql




