Qserv
Prototype of the baseline LSST database architecture

Daniel L. Wang (SLAC), Serge M. Monkewitz (IPAC), Kian-Tat Lim (SLAC),
Jacek Becla (SLAC)

Requirements m

P w700 s e 7 TN

— Incrementally scalable Key table sizes (final data release)

— Reliable and available Table rows footprint

— Low cost Object 26 billion | 48TB
Source 2.1 trillion | 1.3PB

~50 interactive and 20 complex

queries

— Interactive: <10sec
— Object-based: <1h
— Source-based: <1d
— ForcedSource-based: <7d

Baseline Architecture m

— MPP RDBMS on shared-nothing commodity cluster

— Data clustered spatially and by-time, partitioned w/overlaps
— Two-level partitioning
— 2"d Jevel materialized on-the-fly
— Transparent to end-users

— Selective indices to speed up interactive queries,
spatial searches, joins including time series analysis

— Shared scans

— Custom software based on open source
RDBMS (MySQL) + xrootd

Baseline Architecture

[

Distributor Combiner

MySQL
Node

Partitioned
Data

MySQL MySQL MySQL
Node Node Node

< 3
Partitioned Partitioned Partitioned

Data Data Data

Qserv Implementation m—

Intercepting user queries

Worker dispatch, query
fragmentation generation,
spatial indexing, query
recovery, optimizations,
scheduling, aggregation

Communication,
replication

User

Metadata, result cache

proxy

(serv-master

MySQL dispatch, shared
scanning, optimizations,
scheduling

gserv-ofs

Single node RDBMS

.........

Qserv Fault Tolerance 157'

[N

* Components replicated * Narrow interfaces
* Failures isolated e Logic for handling errors
* Logic for recovering from errors

Auto-load balancing user

between MySQL servers,
auto fail-over

=
qserv-master m

Query recovery

Worker failure recovery

—

Redundant workers.
Carry no state.

Two copies of data
on different workers

Partitioning/Spatial Queries m

Spatial partitions

- Interactive small radius cone searches, near neighbor correlations O(N?) -> O(kN)

Large number of partitions
— increases potential for parallelism
— simplifies rebalancing when adding/removing nodes.
— speeds up near neighbor correlations

— increases overhead

Two level partitioning on (a, 6) with overlap
— coarse partitions are unit of distribution across workers
— Fine partitions are materialized on the fly
— Partitions overlap so near neighbor queries avoid inter-worker communication
— Fine partitions provide (coarse) spatial index for small radius cone searches

Status m

Scaling tests: 150 nodes, 2e9 objects, 55e9 sources (~32TB)

— ~4-9s: object retrieval, small area spatial search, object time series
— ~3-8m: full sky filter, densities (scans)
— ~10m - 5h: near neighbor, sources not near objects (joins)

— Shared scans
— User tables, cross-match
— Support for updates
Future Plans — Query fault tolerance
— Partition management
— Usability improvements
— Authentication and authorization
— Resource management
— sciSQL: HTM and other UDFs?

Qserv docs: http://dev.Isstcorp.org/trac/wiki/dbScalableArch
Qserv code: http://dev.Isstcorp.org/trac/browser/DMS/qgserv

sciSQL code: https://launchpad.net/scisql

