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Verification and Validation, Uncertainty Quantification

Experiments
Discrete Soln

to Math Model

Physics and 

Math Model

VerificationValidation

• Validation: Determination that the mathematical model is physically accurate
• Verification: Determination that the equations are numerically solved accurately
• Uncertainty Quantification: characterization of uncertainties in the application

• Answering the question “ What is the expected uncertainty in the output 
metrics of the calculation?” 

• Uncertainty due to variability of input and/or model parameters, or unknown 
processes or mechanisms

Uncertainty Quantification
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Would like to understand required resolution for calculations
 Sponsors want to understand where to allocate resources – finer 

resolutions (bigger computers) or better data (experimental facilities)
 Numerical errors must be small “enough”
 How fine do we need to run?

We are conducting code and calculation verification for 
large-scale, multiphysics codes

Goals for a verification effort:
• Verify convergence of implemented numerical algorithms

− Finds bugs and builds confidence in code correctness
− Gives a baseline for problems where we know the solution

• Understand convergence properties on multiphysics calculations of 
interest (with unknown solutions)

− Is the code self-convergent?
− Is the convergence uniform?

• Estimate numerical approximation error on calculations of interest
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Verification: process of determining whether algorithms 
are implemented correctly and perform as expected

 Code order verification confirms the theoretical order-of-accuracy of 
numerical algorithms employed to solve governing equations
• Are the discrete equations solved correctly?
• Are the physical and discrete equations mathematically 

consistent?
• What is the size of the discretization error?
• What resolution is required to achieve a desired accuracy?

 Calculation verification characterizes convergence behavior as 
discretization parameters are varied for specific calculation
• Is the code self-convergent, i.e., as the discretization parameters 

are refined, does the code converge to a stable solution?
• What is the convergence rate?
• Can we estimate uncertainty in solutions due to discretization?
• What resolution is required to achieve a desired accuracy?
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In code verification our goal is to establish understanding 
of  the correctness of implementation 

 Error 
• A recognizable deficiency in any phase or activity of modeling and 

simulation not due to lack of knowledge (AIAA Guide, 98)
• Ordered: error vanishes in the limit ∆→0, (discretization error)
• Non-Ordered: error persists even in the limit as ∆ → 0, boundary 

conditions, coding mistakes, etc.

 Order-of-accuracy verification is employed due to its high level of rigor
• Test problems with known highly accurate solutions
• Apply systematic grid refinements to extract the order-of-accuracy of 

the implemented discretization schemes

We apply code order verification and detection of non-ordered errors
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For estimating order-of-accuracy, we assume a form of 
the error
Assume form for spatial and temporal discretization error is:

( ) ( ) 21
21

rr tcxcerror ∆∆ +≤

 Choose a ∆t value and verify that the norm of the error on 
consecutively refined grids does not change as this ∆t is 
refined => ∆x term dominates the error

 For spatial order-of-accuracy studies when explicit time 
integration is used (hydrodynamic problems), ∆t is chosen to 
satisfy the CFL constraint and thus decreases with ∆x

 Calculate estimates of r1 by 

 Repeat for calculation of r2
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Best practices require a controlled process

 Prioritize code to be covered in verification
 Identify test cases with known solutions, physically relevant and 

manufactured solutions
 Define acceptance criteria
 Work with the code developers to set up the problems
 Conduct formal review of input decks 
 Run systematic grid refinement studies to determine behavior of 

code with respect to discretization
 Iterate with code developers to conduct follow-on studies
 Document all findings and follow-on issues
 Integrate these test cases into regular code testing procedures 
 Generally, the code is treated as a black box
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Some examples of issues arising in code verification

Tests taken from Tri-Lab Test Suite (Brock, et.al. LA-UR-06-8421)

 Su Olson radiation test problem (nonlinear diffusion operator)
• Non-equilibrium 1D diffusion; constant opacities, no flux-limiter
• Analytic solution integrals contain singularities

 Sedov hydrodynamics test problem
• Spherical explosion initiated by point source at origin 
• Analytic solution requires integration and a root-find
• Code used:

− Not a true Eulerian code: Eulerian formulation does a 
Lagrange step followed by a remap of the grid back to the 
original

− Mesh space parameter in Lagrange formulation was taken 
from the original starting grid
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We consider three norms for measuring the error

i
i

i,exacti,comp xfferror:L ∆∑ −=11

( )
21

2
22 








−= ∑

i
ii,exacti,comp xfferror:L ∆

i,exacti,compi ffmaxerror:L −=
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For shock problems
 Infinity-norm will generally track the error at the shock only
 2-norm will emphasize the error at the shock but include 

contributions from the whole domain
 1-norm will give a “balanced” view of the error with 

contributions from all points
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Our first test case was the Su Olson diffusion problem

 Linear problem, code sees it as nonlinear 
 1D problem set up as 2D with 1 cell in y-direction
 Specified initial condition is 0.  Code uses 10-5.
 Infinite domain problem modeled out to 20 units
 Su and Olson specified the problem with two coefficients on the 

incoming flux.  We used ε = 0.1
 Problem formulated in dimensionless units
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We examined the accuracy of the exact solution code

 Exact solution requires integration of two integrals
 Solution code used a numerical integrator  

 We compared results from reference solution code with those 
generated by Mathematica in extended precision

 We verified the computational code to be accurate to about 4-
5 decimal places as distributed

 By decreasing the tolerances further (1-2 orders of 
magnitude), we verified 5-6 digits of accuracy, but could not 
verify further
• This significantly limited the range of resolutions we could 

test 
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We had to adapt our studies to use non-constant 
time steps

 Support for fixed time step 
and stop time (independent 
of grid) was not straight 
forward

 We set a maximum and a 
small initial step size then let 
the step ramp up

 Truncated final step size to 
end at fixed time

Step size vs. time for 800 mesh cell 
run with ∆t max = 1.0e-4
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Visual results of dimensionless energy and temperature 
show convergence.  This is NOT enough.

Exact and computed 
dimensionless 
energies on meshes of

100, 200, 400, and 800 

Computed-Exact 
differences for meshes

of 100, 200, 400, & 800 

Dimensionless temperature shows the same behavior. 
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Convergence rate was higher than expected after ∆t was 
lowered so that time discretization error did not dominate

Norm 100 200 400 800
inf (u) 3.4E-04 8.2E-05 1.9E-05 3.0E-06

2-nrm (u) 5.0E-04 1.2E-04 2.7E-05 5.2E-06
rate(2 nrm) 2.04 2.16 2.38

inf (v) 3.7E-04 9.0E-05 2.1E-05 3.4E-06
2-nrm (v) 5.3E-04 1.3E-04 2.9E-05 5.6E-06

rate(2 nrm) 2.04 2.16 2.36

# Mesh cells

2-norm

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
100 200 400 800

zones

er
ro

r U
V

Mixed boundary condition 
implementation is not 
documented

Exact implementation used could 
result in expected order of 
accuracy different from 2 

Order of accuracy is 
higher than expected. 

Don’t have an 
explanation for this at 
this time

Max ∆t = 5.0E-8

Are we 
done?
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Temporal accuracy reached first order, although should 
look at finer discretizations

Norm 1.E-04 1.E-05 1.E-06 1.E-07
inf (u) 1.2E-03 3.2E-04 4.7E-05 4.5E-06

2-nrm (u) 2.2E-03 6.3E-04 9.2E-05 8.2E-06
rate(2 nrm) 0.55 0.84 1.05

inf (v) 1.3E-03 3.4E-04 5.0E-05 4.8E-06
2-nrm (v) 2.4E-03 6.6E-04 9.6E-05 8.7E-06

rate(2 nrm) 0.56 0.83 1.04

Max ∆t

 
2-norm

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1E-4 1E-5 1E-6 1E-7

max delta-t

er
ro

r U
V

800 cell spatial mesh

Only three rate estimates

Only one estimate appearing to be in 
the asymptotic range 

Are we 
done?
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The hydrodynamics problems are based on the Euler 
equations
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Momentum equation

Energy equation

Equation of state
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Our next problem was Sedov

 1D spherically symmetric, initial energy drives a shock outward
 Analytic solution code from Frank Timmes (ASU)
 Point source poses a dilemma

• Put all energy in first cell and change the model with grid 
• Use a constant source zone for all grids – not Sedov problem

 We used a constant source zone of 0.01cm
 Code tested using Lagrangian and Eulerian formulations

• E0 = 4935.6 x1012 ergs
• Tfinal = 0.01µs
• 1.2 cm domain

 Verified no effect on order of accuracy results from changing 
tolerances to root-find and ODE integrator
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Lagrangian formulation overshoots the shock position
Density

A = 240 
B = 480 
C = 960
D = 1920
E = 3840
F = reference

Pressure Velocity

Initially, the energy 
increases, then levels off.  

Total energy change 
decreases with grid 
refinement.
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First order convergence is seen for density and 
pressure in Eulerian formulation

Norm
480 960 1920 3840 5760

Density L1 2.9E-02 2.7E-02 1.7E-02 8.9E-03 6.0E-03
L1 rate -1.04 0.10 0.69 0.94 0.97
Linf 2.85 2.97 2.99 2.99 3.00

Pressure L1 10.80 9.50 5.80 3.00 2.00
L1 rate -1.27 0.18 0.72 0.96 0.99
Linf 1.18E+03 1.19E+03 1.20E+03 1.20E+03 1.20E+03

Velocity L1 0.10 0.12 0.07 5.0E-02 *
L1 rate 1.09 -0.26 0.66 0.62 *
Linf 21.10 29.90 30.00 30.00 30.00

% E. change -3.66 -2.58 -1.52 -0.77 -0.52

# Mesh cells

Infinity norm just reflects the shock height.

* Change in computer resulted in suspicious change to reference solution.

Not really an Eulerian
code – are we done?
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First order convergence in space is seen for all 
variables for Lagrangian formulation

Norm
480 960 1920 3840

Density L1 2.6E-02 1.3E-02 6.5E-03 3.0E-03
L1 rate 1.12 1.01 1.01 1.11
Linf 2.94 2.97 2.98 2.99

Pressure L1 8.44 4.15 2.05 0.91
L1 rate 1.14 1.02 1.02 1.17
Linf 1.20E+03 1.20E+03 1.20E+03 1.20E+03

Velocity L1 0.18 0.11 0.06 2.6E-02
L1 rate 1.18 0.67 1.04 1.10
Linf 30.00 30.00 30.00 30.10

% E. change 1.91 0.98 0.46 0.21

# Mesh cells

Infinity norm just reflects the shock height.
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Some comments on code verification before moving on 
to calculation verification

 These examples demonstrate:
• Reference solutions require care in generation and interpretation
• Must be careful in definition of problem AND interpretation of results
• Difficult to say you are done at any given time

 Careful verification can be time-consuming
• How do we quantify the cost and account for it in project scoping?
• Amortize the effort by including in test suite and regularly running

 Who should do code verification work?
• Not a “glory task”; difficult to get secure funding and people to do it; 

difficult to publish or present
 Difficult to really verify a whole code

• Idealized problems test limited regimes of code; each problem is time-
consuming to set up and run

• Manufactured solutions test more code; start-up time can be amortized
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In calculation verification, we want to understand 
convergence behavior and error for a given calculation

 Once we can say something about behavior on problems with known 
solutions, need to understand behavior on problems of interest

 Calculation verification characterizes solution behavior as 
discretization parameters are varied for problems with unknown 
solutions

Systematically 
refine 

discretization 
parameters

Evaluate 
variations in 

metrics

Determine if the 
metrics 

converge

If convergence 
is observed, 

estimate its rate
If rate is stable, 
estimate error
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Common non-intrusive analysis approaches rely on 
multiple runs and the asymptotic regime

Most commonly used class of methods for calculation verification is 
based on discretization refinement studies 

Self convergence – measure fi against the finest grid value, fN, to 
determine whether differences decrease with resolution

Generalized Richardson 
Extrapolation (GRE)
Assume a power law form for the 
error
For any three data pairs, solve for 
the coefficient, fexact, and the 
convergence rate

Least-squares power-law (LSPL) 
nonlinear regression
Define a power law curve
Formulate a minimization problem 
between observed and expected 
power law behavior
Solve for the power and intercept

Modal decomposition: Apply GRE to each eigenfunction of the space 
spanned by the solutions at each resolution (Hemez)
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Convergence study gives solutions at different resolutions: 

{f_i, h_i},  i = 1…N

Assume  a power law form of the error

We can observe self-convergence and in some limited 
cases estimate error

p
exact hff β+=
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p
21
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32

p
3exact3
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p
21
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2exact2
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1exact1
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>>>

=
Assumes:

Asymptotic regime regime

Monotonic convergence

β and p must be constant

Can solve for β and fexact once have p

These methods have been used in many applications, but the 
strong assumptions on the asymptotic regime limit applicability 
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Asymptotic assumption of common methods is very 
strong and new methods are needed

Pulse

Stall

Multi-Scale Linear Advection 
Convergence 

Sinusoid
+

Pulse

Sinusoid

 GRE methods assume asymptotic 
error ansatz:

 Ansatz invalid for real multi-
physics codes:
• Assumes all scales resolved
• Assumes a fixed discretization of 

a fixed mathematical model
• Can only see behavior of least 

accurate physics in multiphysics
simulation

( ) rxcerror ∆≤

We are looking into alternative methods:

Nonlinear error transport and adjoint methods
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Nonlinear error transport formulates and solves a new 
equation for the error

• Nonlinear error transport: evolve an equation for the error 
along with the original governing equations

• Extension of differential correction method for ODEs

Start with a primal equation: s)u(Fut =+∂

Solve for v so that the error, e, is u - v

Form the error equation: vs)ve(Fe tt ∂−=++∂

Add and subtract F(v) from each side:

)s)v(Fv()v;e(Ge tt −+∂−=+∂ where G(e;v) is F(e+v)-F(v)

We thus have an equation for the error driven by the residual 
of the primal equation.  Can show accuracy in special cases.
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Linearizing the error equation can lead to loss of 
accuracy for smooth solutions

LHS of the error != LHS of the primal equation (F nonlinear)

Linearized transport operator Full nonlinear transport operator

Inviscid Burger’s equation with smooth solution: Lose an order of 
accuracy due to inconsistent linear approximation of the  nonlinear 

operator; 2nd order with linear operator and 3rd with nonlinear operator
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Linearizing the error equation can lead to an 
inconsistent approximation of the error

• Prior work assumed 
• With discontinuities, |e| ~ |u|, and this assumption is invalid

)t,x(u)t,x(e <<

Inviscid Burger’s equation with discontinuous initial data: Linearizing
the transport operator leads to failure of convergence

Linearized transport operator Full nonlinear transport operator
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2D Burgers equation further shows need to include  
nonlinear terms in the error equation

Unstable growth of error near a shock without nonlinear terms in error eqn
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x [- π, π] 

∆x = ∆y = π /800

IC: u = 1 in 
circle of radius 
1 centered at 
origin

MOL with 
unlimited 2nd

order spatial 
discretization

Final time = 15

Errors on line y = -0.5, x in [-2, 0], t = 15
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Current work is concentrating on two areas

Choice of residual calculation for forcing term
1. Approximate by discretization

• Must use different scheme than for primal equation
• We are finding that conservation can be important here

2. Use leading truncation error term
• Not readily available
• May need more than just the leading term

3. Reconstruct the approximate solution, then directly apply the 
differential operator
• Requires consistency with boundary and initial conditions

Choice 1 seems most applicable to general equations and discretizations, 
and we are working with that

Choice of error flux evaluation to avoid nonphysical states
• Base flux computations for error equation on computed state and not 

the error value 
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Adjoint methods use the property of the dual to develop 
an estimate of error in a computed quantity of interest

• Adjoint methods: solve  auxiliary adjoint equation; use adjoint
to estimate error in a quantity of interest, (e,Ψ)

• Efficient for quantities of interest, rather than error field
• Little rigorous work for hyperbolic systems

|M(u)-M(v)|=|(e,Ψ)|=|A*(Φ,e)|=|A(e,Φ)|=|(R(v),Φ)|

Consider a Quantity of Interest (QoI): ∫= Ψu)u(M

Write in variational form with bilinear operator, A: 0)v,u(A =

Adjoint operator to A is A* defined by: )v,u(A)u,v(A* =

Define an adjoint problem with data from QoI: ∫= w)w,(A* Ψφ

So, error in the quantity of interest is:
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Current work is concentrating on three areas

• Well-posedness of adjoint problem
• For nonlinear problems and/or nonlinear schemes, common 

practice is to linearize about the computed solution
• It is unclear whether these adjoint problems are well-posed

• Discontinuous forward solutions
• Theory is not well-developed for these cases
• Computational results show the method may work well

• Computational efficiency for adjoint solution
• For time-dependent equation, adjoint runs backward in time

Forward Time Advancement

Backward Time Advancement
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We developed a theory accounting for separate adjoint
and forward solvers

 Bridged gap in theory for adjoint error estimation for finite volume 
methods (FVMs) not posed in a variational framework

 Generality in reconstruction of FVM data, adjoint solver & grid  
 Developed for constant-coefficient linear advection

)~),u~(R(
)~),u~(R()),u~(R(e~e

φφ
φφ

−=
−=−

)~),u~(R(e~ φ≡
Computable error estimate:

Minimum of: [order of forward FVM] and 
[degree of forward reconstruction]

Grid size: forward computation Grid size: adjoint computation

Minimum of: [order of adjoint
FVM] and [adjoint reconstruction]

( ) ( )( )qp
u xxOe~e φ∆∆=−

Accuracy of the computable 
error estimate is: 
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We confirmed the theory in 1D and 2D for constant-
coefficient linear advection

QoI: Fourier coeff. (Real)
Forward: 2nd-ord, nonlin
Adjoint: 2nd-ord, linear 

QoI: Soln energy nonlin

Forward: 2nd-ord, nonlin

Adjoint: 1st-ord, linear 

QoI: Fourier coeff., Real

Forward: 1st-order lin.

Adjoint: 1st-order lin.

QoI: point evaluation  

Forward: 2nd-ord, nonlin

Adjoint: 2nd-ord, linear 

Smooth adjoint sol’n

Better accuracy than 
expected due to 
superconvergence

Smooth adjoint sol’n

Estimate very good 
although use a lower 
order adjoint
discretization

Coarse adjoint grid 
reduces cost by 8x

Expected 
convergence rate for 
both grids

Hard QoI: adjoint
solution is not 
smooth

Results reasonable 
although theory does 
not apply

1D 1D 2D 1D
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Summary and future directions
 A posteriori estimates of error

• Error transport with nonlinear terms is very promising
• Adjoints are good for QoI and can provide new insights

− Splitting errors
− Errors due to specific components
− Mathematical frameworks stumble with discontinuities

 Modal decomposition methods
• May be very useful in regimes with no minimal length scale

 Methods for discretization uncertainty estimation
• GRE and related methods are restrictive – maybe that’s what’s 

needed
 Needed items for effective verification

• Improved a priori estimates of expected convergence behavior
• Multiphysics test problems

− Test suites
− Manufactured solutions

• Scripted tools to build and execute studies
• Coverage tools for use in understanding whether consistent 

physics runs within a study
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Some questions to end with
 Code verification

• Who should do this?  Code developers, independent testers?
• Should the people doing verification have access to the source 

code, or only the documentation of the code?
• How do we define finished?
• What cost do we allow for this? (Note that software companies 

have ratios of 1-5 testers to 1 developer, testers don’t see source)
• What is the expected outcome of code verification?

 Calculation verification
• Is it the norm or the exception that codes run with discretizations 

within the asymptotic regime?
• Is it reasonable to extrapolate resolution requirements based on 

limited error assessments?
• How much compute time are we willing to give to error estimation?
• Comment that referees still do not see value of estimation

 Do we have good test suites for our codes?
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Assumptions on the error model break down in practice 
for complex, hydrodynamics calculations

 Ambiguity of metrics for discontinuous solutions
 Isolation of code departures from original governing 

equations (e.g., floors, thresholds, etc.)
 Competing error sources

• Characterizing the dominant term
• Expensive to refine all discretization parameters at once

 Phase errors can accumulate leading to significant error
 Solution adaptive models and schemes invalidate error model 

assumptions
 Iterative schemes can leave dominant and persistent errors 
 Codes may not be robust for studies with fixed algorithmic 

parameters
 A priori error estimates for implemented schemes and 

nonlinear problems may not exist
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