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Nuclear Reactor
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Bad Fuel Management
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Nuclear Reactor Core – Bundles in the Pool
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Introduction

Given a reactor core and fuel bundles

of different ages ...

... assign bundles to nodes such that

1. the yield is maximized;
2. physical side constraints are satisfied;
3. safety limitations are respected.

?

→ Assignment problem; objective is described by a PDE;

→ Nonlinear mixed-integer optimization problem.
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Physical Background
Reactivity in the core is determined by neutron flows.

Neutrons density increases due to fission

and decreases due to absorption and leakage.

The neutron flow is described by the diffusion equation:

∂φx,t

∂t
−D∇2

xφx,t +Ωa
xφx,t = Ωf

x,tφx,t

where φ is the neutron flux; Ωa the neutron absorption rate;

D the diffusion coefficient; Ωf the neutron production rate.

Ωa/f depend on the fuel composition.
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Physical Background (2)

Under some assumptions,

the diffusion equation can be replaced by the system

∂k∞x,t
∂t

= − σk∞x,tφx,t. (1)

−D∇2
xφx,t + φx,t =

1

keff(t)
k∞x,tφx,t. (2)

Here

• σ is a constant describing the change in fuel composition;

• k∞ = Ωf/Ωa is the infinite multiplication factor, which describes

local neutron production rate

local neutron loss rate
;

• keff behaves as the inverse of an eigenvalue, and can be viewed as

total neutron production rate

total neutron loss rate
.
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Physical Background (3)

Equation (2) is a Helmholtz equation. In 1D, it is a Sturm-Liouville

differential equation, which has nice properties:

• All eigenvalues are real and simple;

• All eigenvectors are real;

• The smallest eigenvalue has nonnegative eigenvector;

Moreover, an adjoint equation exist: given the DE

L[φ(x)] = λk∞x,tφx,t)

with boundary condition

φ(x) = 0

there exists a Greens function g(x, s) such that

φ(x) =
∫

X
g(x, s)λk∞s,tφs,tds. (3)

Tamás Terlaky, ISE, Lehigh U. Nuclear reactor core reload optimization 8



Fixed Core Model
This allows a coarse discretization grid, with one grid-point per bundle.

Then the Greens function equation (3) becomes a matrix eigenvalue

equation:

k
eff
t φt = G(k∞t · φt) ∀t, (4)

where k∞t = (k∞1,t, ..., k∞N,t)

φt = (φ1,t, ..., φN,t).

Using the normalization

k∞t T · φt = 1 ∀t (5)

and a discretization of the burnup (1)

k∞t+1 − k∞t = − σ∆t k∞t · φt ∀t, (6)

the core behaviour is completely specified once k∞0 at t = 0 is known.

This is determined by the loading pattern.
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Reloading

At End of Cycle, four year old bundles are discharged, the other bundles

are shifted. So, each bundles has its own 4-year trajectory in the core.

This is described with the variables

xi,`,m =





1 if position i contains the bundle
at age ` from trajectory m;

0 otherwise

The assignment constraints are
∑

`

∑
m

xi,`,m = 1, ∀i

∑

i

xi,`,m = 1, ∀`,m

The reloading is described by

k∞
i,1 =

∑
m

xi,1,m kfresh +
∑

`>1

∑
m

∑

j

xi,`,mxj,`−1,m k∞
j,EoC, ∀i.
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Complete Model

• The assignment constraints:
∑

`

∑
m xi,`,m = 1, ∀i

∑
i xi,`,m = 1, ∀`,m

• The reloading operation:

k∞
i,1 =

∑
m

xi,1,m kfresh +
∑

`>1

∑
m

xi,`,m

∑

j

xj,`−1,m kj,EoC, ∀i

• Core evolution during the cycle:

keff
t φt = G(kt · φt) ∀t

kT
t φt = 1 ∀t
kt+1 = kt − α∆t kt · φt ∀t

• Safety limitation and Objective:

ki,tφi,t ≤ f lim ∀i, t

max keff
EoC
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Assumptions

• 2D model, one discretization point per bundle;

• Octane symmetry, with 1/2 nodes on diagonal;

• Homogeneous bundles, stationary reload cycle, no burnable poison.
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Solution Methods

• Literature, Practice:

– Simulated annealing;

– Genetic algorithms;

– Pairwise interchange.

• Our work:

– Nonlinear mixed-integer optimization.

Motivation:

∗ Computation times for local search methods are very large;

∗ Model extensions require continuous optimization;

∗ Explore model structure for MINLO.
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Algorithm

1. Fix starting pattern.

2. Solve kernel equations using power method.

3. Run NLP-solver from this starting pattern.

4. If solution is integer then go to 7.

5. For each possible rounding of the current solution

(a) Run power method for this fixed pattern.

(b) If this is the best rounding so far → Store.

6. Set current solution = best rounded feasible solution.

7. If current solution is integer and feasible then local optimum found.

8. (Optionally) Run local search starting from the current solution.

9. + B-and-B, cuts, linearization ...
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Starting Pattern

A good starting pattern is

extremely important.

We use a fractional pattern,

i.e., bundles are divided over

multiple nodes.

From engineering knowl-

edge, ’most likely positions’

for each age are determined.

90% of the age group i is in

its corresponding most likely

positions.
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Small and Medium Size Example
Small size solution Medium size solution
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Large Size Example
Large size solution
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Rounding and Multiple Local Optima

Fractional solution:

objective and powerpeak.

Round to further integer value!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.0139

1.014

1.0141

1.0142

1.0143

k^eff

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.7

1.8

1.9

2

2.1

max. power

f_lim

MINLO solution (left) PI solution (right) with with equal objective.
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Extension 1: Central Discretization
• Central vs. Forward time-discretization. For comparison with meth-

ods in practice, we first used forward time-discretization. In those methods, im-

plementation of central discretization requires some predictor-corrector method

which is more time-consuming.

• In the NLO context we can use central discretization directly, which

is more accurate, results more robust.

• Less time discretization points are needed.

0 50 100 150 200 250 300 350 400
1.009

1.0092

1.0094

1.0096

1.0098

1.01

1.0102

1.0104

1.0106
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Extension 2: Burnable Poisons
• Burnable Poisons. Fresh bundles can cause high local power

peaks at Begin of Cycle. This can be avoided by adding neutron

absorbing material, that is only active at the beginning.

• Burnup equation:
k∞t+1 − k∞t = − σ∆t bt(∆t)k∞t · φt ∀t,

• Since the fraction of Burnable Poison can vary continuously, deter-

mining the optimal fraction is a continuous optimization problem,

that cannot be handled very well with traditional techniques.

The MINLO approach handles this problem quite well.
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Extension 3: More Accurate Model

1

2 3

6 7

8

BA

0.6 0.6
0.40.4

0.4
0.6 0.6

0.4

4 5

1

2 3

6 7

8

BA

0.4
0.6 0.6

0.4

4 5A BA B

Use of xi,`,m: i = node, ` = age, m = trajectory.

x2,1,A = x3,2,B = 1;

x4,2,A = x5,3,B = 0.4;

x4,3,B = x5,2,A = 0.6;

x6,3,A = x7,4,B = 1.

In the model, node 6 contains a mixture of bundles from nodes 2 and 3.

The new model traces the parts to extract the A-parts to 6, B-parts to 7.
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Model Extension Continued ...
We must trace the infinite multiplication factor of the fractional parts.

For the original model, this implies that

the reload equation is replaced by

k̂∞i,1,m,1 = xi,1,mkfresh, ∀ i,m

k̂∞i,`,m,1 = xi,`,m

N∑

j=1

k̂∞j,`−1,m,T , ∀ i, `, m.

The burnup equation is then replaced by

k̂∞i,`,m,t+1 = k̂∞i,`,m,t − α∆t k̂∞i,`,m,t+1φi,t,

∀ i, `, ∀ m, t.

Finally, we have to give the relation between all those separate k̂∞i,l,m,t

variables and the node-average k∞i,t:

k∞i,t =
L∑

`=1

M∑

m=1

k̂∞i,`,m,t ∀i, t.
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Results with Burnable Poison
The small test set.
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Results with Burnable Poison
The medium and the large problems.
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Conclusions

• Mixed integer nonlinear optimization has much potential in solving

this type of complex problems.

• Good starting points are especially important for good solutions.

• Although for this specific problem, MINLO works well,

many integer solutions turn out to be local optima.

• Combination of methods seems to be the best possible way to

obtain high quality results in reasonable solution times.

• Using MINLO enables the use of more accurate discretizations,

and also enables the develop more complex, realistic models that

require continuous decision variables.

• The rounding procedure can be improved by using problem-specific

cutting procedures, e.g., age cuts.
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Further Work

1. Develop dedicated MINLO solver.

2. Model the rotation of bundles.

3. Model the use of control rods.

4. Model the 3D spacial core.

5. Model non-stationary operation.

6. Model 3D continuous operation, such as the CANDU reactors.

7. Challenges:

• Items 2-5 each increase model size by an order of magnitude.

• Optimizing continues operation requires fast solution time.
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