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Outline 2 D Continge

Generic AC OPF Model

@ b € B Buses

® g € G Generators
@ [ € L Lines

v
Parameters

ay, B conductance and susceptance of line /

Op susceptance of power source at bus b

df, dt? real and reactive power demand at bus b

fi flow limit for line /

Vi Voltage level at bus b

0p Phase angle at bus b

Pg, Qg Real and reactive power input at generator g
F(’,?J.), F(?j) Real and reactive power flow on line | = (i)

A\
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Outline OPF Robust OPF |V Contingency Generation Modelling

Generic AC OPF Model

@ Kirchhoff Voltage Law (KVL)

F(I:?J) Vilay(Vi — Vjcos(6; — &;)) + B Vjsin(d; — §;)]
Fii ViIBI(V; sin(8; — 6;) — Vi) + a; Vj cos(; — 67)]
@ Kirchhoff Current Law (KCL)
Y. Pe = Y Fhy+df, vbeB,
glog=b (b,i)eL
> Q-BVi = > Fiy+d) VbeB
glog=b (b,i)eL

@ Line Flow Limits at both ends of each line
(FE +(FE) <

-2
(FGo +(FSy)? <

-
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Outline OPF Robust OPF IPM Contingency Generation Modelling

Structure of AC OPF problem

FQ

Can use KVL to eliminate FF ()

(i)’ = left with A, V,P/Q
@ Flow limits at to and from nodes:

he(A, V)
he(A, V)

IA A

@ Kirchhoff Current Law

P = g"(aV)
QR = gQ(Av V)

A:(517"'76\B|)7V:(Vla"'7\/|B\)’P:(P17"'3P\g|)7Q:(017"'7Q|g|)

= The AC OPF is a nonlinear programming problem
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Outline OPF BE

Structure of DC OPF problem

Model is simplified under the following assumptions:

@ The voltage level at all buses is the same: V.

@ The resistance of each line is small (compared to reactance):
= ay=0,8 = —1/n, r: resistance of line /

@ The phase angle difference between each two buses is small
= sin(d; — d2) & 01 — d2,cos(d1 — d2) = 1, = F(?_J.) =0.

- -

DC-OPF model

@ Kirchhoff Current Law

Y Pg= Y Fhy+di, VbeB
glog=b (b,i)eL
@ Kirchhoff Voltage Law

V2
FP=—=—> awby, VieL
e
@ Line Flow Limits: —f; < F,P <f, VleL
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OPF

Structure of DC OPF problem

Given

@ bus/generator incidence matrix J € RIBIx|9]

RIBIx|Z]

@ node/arc incidence matrix A €
o R=diag(—V?/r,...,—V?/rg)
the DC-OPF problem can be written as

min ¢'P
st. RF +ATA =0
AF —JP =—d

= DC OPF is a linear programming problem

Question: When is this a good/adaequate approximation?
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Robust OPF
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Outline OPF Robust OPF IPM Contingency Generation Modelling
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Outline OPF Robust OPF Continge atio Modelling

Robust OPF formulations

Classical approach: Network should survive the failure of any one
bus or line (possibly after limited corrective actions) without
line-overloads.

Stochastic demand /generation

Network should have flexibility to cope with stochastically changing
demand/generation (after corrective actions) without line overloads

Robust demand/generation

Network should be able to cope with the worst case
demand/generation scenario within a given confidence set.

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF Co eneration

(n-1) secure OPF

Setup

@ Contingency scenarios ¢ € C, each has its network matrix A,

@ Real generation P and Voltage V, same for all contingencies,

@ Each contingency has its flow, voltage, phase angle and
reactive generation: FCP/Q, Ve, Ag, Qc,

@ Possible modification of generator output AP, in each
contingency scenario.

@ Seek a generator setting that does not create line overloads for
any contingency

|

DC SCOPF
min c'P
s.t. RF. +AlA. =0, VceC
AcF. =JP—d, VceC

'
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Outline OPF Robust OPF IPM Contingency Generation Modelling

Structure of (n-1) secure DC OPF

minpyAf CTP
s.t. RFy  +A] A =0
AiFy —JP =d
RFic| +A‘E|A‘C| =0

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Continge eneration

Structure of (n-1) secure DC OPF

@ Bordered block-diagonal matrix.
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Outline OPF Robust OPF IPM

Structure of (n-1) secure AC OPF

y Generation Modelling

Structure of Jacobian

uu @ e Qe Ve P
T /T
H, HV(5
Ge —J 6,
P
G! Gt —J
H,f/t H‘f//t
6@ -4 68
I Gy Gy, —J |
v
onf/'t ¢ Oh'/t ogP 0g®
= (A, Vi), H/t = HE = Q_"6 GP_"6_
u ( ) b)a u i » Ty, a\/g s Yy i s Yy au 9

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Co Generation

Structure of (n-1) secure AC OPF

Structure of Jacobian

onf/'t ¢ Oh'/t ogP 0g®
= (A, V), H/t = —— HI/t = Q_"6 GP_"6_
u=(B Vo) K" =g My = Gy O = 5 6 =

-
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Outline Robust OPF Conting

@ UK target of ~30% wind generation by 2020

@ Licenses for development of 32 GW offshore by 2020
announced earlier this year

@ Transmission is a major problem

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline Robust OPF

OPF W|th stochastic demand/generatl

Stochastic Programming Setup

@ Decide on initial (real) generation P, Vg,

@ Several demand scenarios dSP, dSQ, each with probability 7,

@ Uncertain (wind) generation modelled as negative demand.

@ Each scenario has its Flow, Voltage, Phase, reactive
generation: FSP/Q, Vs, As, Qs.

@ After demand/wind is observed generator output AP may be
adjusted (within bounds) in each scenario.

PV, — d'7 — FPP v, A, Q. AP,

'

DC OPF with stochastic demand/generation

min CTP—i—ZsﬂsczTAPS
st.  RF, +ATA, =0, Vse S
AF; —JAP;, =JP—d;, VseS8

A. Grothey, N. Chiang, C. Dent IPM for OPF




Outline OPF Robust OPF IPM Contingency Ge on Modelling

Structure of DC OPF with stochastic demand

min m1c APy +- - +mncy AP, 4¢P
P,AF
s.t. RF; +ATA1 =0
ALFy —JAP; —JP =d;
RF, +ATA, =
AnFp —JAP, —JP =d,

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM onting eneration

Structure of DC OPF with stochastlc demand

® Bordered block-diagonal matrix.
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Outline OPF Robust OPF Co eneration

Risk modelling for OPF

Stochastic Programming facilitates Risk Modelling

Possible model extensions

@ Optimize expected cost of initial and recourse decisions.

@ Bound risk exposure (measured by variance of recourse cost)
@ Bound VaR/CVaR (risk exposure in worst p% of events).

@ Require to outperform a given benchmark i )
(— Stochastic Dominance)

- -

Combined model

@ The (n-1) secure and stochastic demand/generation model
are of the same structure.

@ Can be combined into a model incorporating both
contingency and demand/generation scenarios.

@ Can assign probabilities to contingency scenarios (to allow risk
modelling) Lamadrid et al '08: SuperOPF framework

A. Grothey, N. Chiang, C. Dent IPM for OPF



Interior Point Methods (for LP)

Linear Program

min ¢’ x st. Ax = b (LP)
x > 0

KKT Conditions
c—AT\—s
Ax =
XSe

X,S

(KKT)

VAl
O O o O
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IPM

Interior Point Methods (for LP)

Barrier Problem

minch—uZInx,- st. Ax = b (LPL)

KKT Conditions

c—ATA—s = 0
Ax = b (KKT,)
XSe = e
x,s > 0

@ Introduce logarithmic barriers for x > 0

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

Interior Point Methods (for LP)

Barrier Problem

KKT Conditions

c—ATA—s = 0
Ax = b (KKT,)
XSe = e
x,s > 0

@ Introduce logarithmic barriers for x > 0

@ (LP,) is strictly convex

@ System (KKT,) can be solved per Newton-Method

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

Interior Point Methods (for LP)

Barrier Problem

KKT Conditions

c—ATA—s = 0
Ax = b (KKT,)
XSe = e
x,s > 0

@ Introduce logarithmic barriers for x > 0
@ (LP,) is strictly convex
@ System (KKT,) can be solved per Newton-Method

@ For y1 — 0 solution of (LP,) converges to solution of (LP)

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

Interior Point Methods (for LP)

KKT conditions

c—ATA—s = 0

Ax = b
XSe = pe (KKT,)
x,s > 0

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Interior Point Methods (for LP)

KKT conditions

c—ATA—s =
Ax = b
XSe = pe (KKT,)
x,s > 0

Central Path

The set of all solutions to (KKT,) for all 1 > 0.
Central Path joins the analytical center (for y=o0)
W|th the LP solution (for 1 = 0).

|

Nelghbourhoods (of the central path)
Na(0) == {(x;A5) € FO: || XSe — pell2 < Ou}
Noo(¥) = {(x,\5) € FO:xis; > yu}
where F0 .= {(x,\,s) :c = ATA —s=0,Ax = b,x > 0,s > 0}.

A\
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Interior Point Methods (for LP)

KKT conditions

c—ATA—s =
Ax = b
XSe = pe (KKT,)
x,s > 0

0 AT | Ax £c c—ATA—s
A 0 0 AN [ =] & | = | b—Ax
S 0 X As Ixs uye — XSe

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Interior Point Methods (for LP)

KKT conditions

c—ATh—s =
Ax = b
XSe = pe (KKT,)
x,s > 0
0o AT | Ax &c e— AT =5
A 0 0 AN [ =] & | = | b—Ax
S 0 X As Ixs uye — XSe

Newton Step (reduced)
-0 AT ][ Ax] [ & —Xtrs
A 0 Ay || &

where © = X715, X = diag(x), S = diag(s)

A. Grothey, N. Chiang, C. Dent IPM for OPF
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Path Following Methods

@ choose xg, Ao, S0 > 0,11 = xg S0/

@ compute Newton step (ax, as, a)) for (KKT) and given
ut < .

@ compute stepsizes

a= m;a%({a i x+anx>0,s+as>0,(x,5) € Vo o(7)}
«

o take step
xy = x4 0.995aax
Ay = A+0.995aa)
sy = z+0.99aas
@ update pu:
T
Pt = 0%, O<oxl1

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

Solving NLP by Interior Point Method

min f(x) stt. g(x) < 0 (NLP )

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

Solving NLP by Interior Point Method

minf(x)—;zZInz,- st. gx)+z =
z > 0

0 (NLP,,)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF IPM Continge

Solvmg NLP by Interlor Point I\/Iethod

minf(x) —p» Inz st )+z =0 (NLP )
> 0

Optimality conditions

Vi(x)—Alx)'y = 0
gx)+z =0
XZe = e

x,z > 0

[Qu,y) A(xq H _ [ V—f(x) — A() Ty

A(x) —© —g(x) —pY~le

Qx,y) = Vi (f(x) +y '&(x)), A(x) = Vg(x)
©=X"17Z X =diag(x), Z=diag(z)

A. Grothey, N. Chiang, C. Dent IPM for OPF
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Linear Algebra of IPMs

Main work: solve
A I S e R

¢ (QP) ¢ (NLP)

for several right-hand-sides at each iteration

Two stage solution procedure

@ factorize ® = LDLT

@ backsolve(s) to compute direction (Ax, Ay) + corrections

= ® changes numerically but not structurally at each iteration

Key to efficient implementation is exploiting structure of @ in
these two steps

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

Structure of matrices A and @ for SCOPF:

Matrix A(x) Matrix Q(x, y)

Ty

T

e
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IPM

Structures of A and Q imply structure of ®:

LA

.I

Ic
Q AT
A 0
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IPM

Structures of A and Q imply structure of ®:

s "=

.I

le|
Q AT
A O

Bordered block-diagonal structure in Augmented System!

A. Grothey, N. Chiang, C. Dent IPM for OPF



IPM

OOPS: Object Oriented Parallel Solver

@ OOPS is an IPM implementation, that can exploit (nested)
block structures through object oriented linear algebra

@ Solved (multistage) stochastic programming problems from
portfolio management with over 10° variables
(= 2h on 1280 processors)

kmwm
7
e/

©ee
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Outline OPF Robust OPF Contingency Generation Modelling

Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix

¢1 BlT X1 b1

o, B, | | x | b

Bi--- B, $o X0 bo
N—— ——— N~ N——

) 2 b

- -

Solution of Block-system by Schur-complement

The solution to ®x = b is
X0 = C_lz)o, Bo = bo = Zi B,'(Di_lb,'
Xj = ¢i_1(b,'— BI-TX()), I = 1,...,!7
where C is the Schur-complement
C=do— ) BB/
i=1

A\

= only need to factor ®;, not ®

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Exploiting Structure in IPM

Solution of Block-system by Schur-complement

The solution to ®x = b is

Xg = C_lz)o, [NJO = by — Zi Biq)rlbi
Xj = q)fl(bi— BI-TXo), i=1,...,n

where C is the Schur-complement
n
C=dg— Z Bio 1B

i=1

Bottlenecks in this process are

@ Factorization of the ®;
o Assembling 3.7, B;¢ B,

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Structure of Augmented System Matrix

b, B
? D; wT
® = =
1
o, B
By By -+ B, g |

A\

R AT + [o
w2 4] o[

For AC-OPF

f
Hi/t / Hv/t
Wi=| 62 J B = Gé
P
G! Gl

-

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

BIock—Faftorization for DC-OPF

Structure of ®; for DC-OPF
D; W,-T R A,T T 0

Factorization of ®;:

W; is invertible and constant throughout IPM iterations

@ To solve ®;x = b only W; needs to be factored:

D; VViT x(0) b(0)
W ' e =]

= x() = Wl-_lb(l), x(0) — Di_l(b(o) _ W,-Tx(l))

To build Bi®; B

Bo B! = —JTW DWW
= —VD,V", V.l = wty

! 1

A. Grothey, N. Chiang, C. Dent IPM for OPF




Exploiting Structure in IPM

Solution of Block-system by Schur-complement

The solution to ®x = b is

Xo = C_léo, bo = by — >_; Bi®; 'b;

C=do+ > VDV, VI=wJ
=il

Forming V;D; V,-T is expensive J

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline

Epr0|t|ng Structure in IPM

Solution of Block-system by Schur-complement
The solution to ®x = b is

X0 = C_léo’ bo = by — >_; Bi®; 'b;
C=dg+> VDV, Vi=wJ
i=1
Forming V;D; V,-T is expensive J

= Solve Cxp = by by iterative method

@ Use (preconditioned) iterative method (e.g. GMRES)

@ with M = &g + nVy Dy VO—r as preconditioner for SCOPF
(Qiu, Flueck '05)

= Evaluating residuals r = by — Cxp is easy:

Cxg = ®oxo + Z JTw TD W~ ! xo, J is 0-1 matrix

v

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF st O Contingency Generation

State of the Art:

IPM for OPF: State of the Art

@ Structure exploiting Linear Algebra within IPM

@ Schur-complement approach with compact factorizations

@ Preconditioned iterative solver for Schur-complement matrix
@ All done automatically through OOPS.

Problems are still very large

Pan European network with 13000 nodes, 20000 lines
= ~ 100 variables/constraints for (n-1) SCOPF. (+ wind!)

Novel Approaches
@ Structured IPM Crash-Start

@ (Dynamic) Contingency/Scenario Generation

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash Start

@ SCOPF (like many other structured problems) consists of a
small core that is repeated many times.

= First solve much smaller problem of same structure

@ Use solution as advanced starting point for the full problem

Q scenaio1
Q@ Scenaio2
Q© scenarios
Q@ scenaios ‘

Generation Contingencies

@ |PMs are notoriously bad at exploiting a known starting point

A. Grothey, N. Chiang, C. Dent IPM for OPF




Contingency Generation

Warmstarting Interior Point Methods

Aim: Use information from solution process of

minc' x s.t. Ax

b (LP)
0

X
VA1

to construct a starting point for (nearby problem)

o

min¢' x st. Ax
X

(LP)

AV
o

where A~ A b~ b, &~ ¢

o It is not a good idea to use the solution of (LP) to start (LP).
@ Unlike for the Simplex/Active Set Method!

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Hipolito (1993): Search direction is parallel to nearby constraints

Original Probl

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Hipolito (1993): Search direction is parallel to nearby constraints

Modified Problem

Original Problem

= only small step in search direction can be taken

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Warmstarting Heuristics

Idea: Start close to the (new) central path, not close to the (old) solution

Modified Problen

Original Problem

= Start from a previous iterate and do additional modification step.

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Warmstarting Heuristics

Idea: Start close to the (new) central path, not close to the (old) solution

Modified Problen

Origina Problem

IPM Warmstart: State-of-the-Art
@ Can save (consistently) about 50%-60% of IPM iterations

@ Across all problem sizes (up to &~ 108 variables)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Warmstarting Heuristics

Idea: Start close to the (new) central path, not close to the (old) solution

Modified Problen

Origina Problem

IPM Crash-start

@ Find (cheaply) a point near the central path of the problem
(correponding to an appropriate -value)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Interior Point Warmstarts: Theoretical Results

A typical warmstart result is (Assume A = A);

Lemma (based on Yildirim/Wright '02)

Let (x, A, s) € N2(6) for problem (LP) the the full mod. step
(Ax, AN, As) in the perturbed problem (LP) is feasible and

(x + Ax, A+ A\, s + As) € No(6)

provided that

0—06y . 1 1
< "
%c = oe@) ™" {2n+ 1 4C(d)||du}

= “small 0, large p”

C(d) is the Renegar cc:lndition number of the problem d = (A, b, ¢):
C(d) = Adl p(d) = “distance to infeasibility”

p(d)’ A Ab
and Spe 1= € Loc
be = g T2y

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start

Cy1[C2[C3[C4|C5|C6 |C

@ Choose a few sample scenarios

@ Generate a central point for the reduced problem

@ And extend it to a warmstart point for the full problem

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start

Az

@ Select sample scenarios

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start
[CilC2] [Ce |
:>

A. Grothey, N. Chiang, C. Dent IPM for OPF

@ Select sample scenarios

@ Reduce Problem



Contingency Generation
Structured IPM Crash-start

13

@ Select sample scenarios

@ Reduce Problem

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start

Rl

To solve the problem by warmstarting, reverse the process

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start

Z11Z21Z6 ]

=
v

To solve the problem by warmstarting, reverse the process

@ Find central point for reduced problem

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start
[Cal

m  xE

=<

To solve the problem by warmstarting, reverse the process
@ Find central point for reduced problem
@ Expand the problem to original size

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contlngencv Generation

Structured IPM Crash-start
[C1]C>[C>[C>[CqICqICH]

211251

To solve the problem by warmstarting, reverse the process
@ Find central point for reduced problem
@ Expand the problem to original size (by duplicating scenarios)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation
Structured IPM Crash-start

4

s

A

o

To solve the problem by warmstarting, reverse the process
@ Find central point for reduced problem
@ Expand the problem to original size (by duplicating scenarios)
@ Expand solution to primal/dual feasible and near central point
for expanded problem

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Structured IPM Crash-start

X1 [X2 [X2 [X2 [Xe [X6 [Xs
21125125125 126 1Z6 [Z6 |

To solve the problem by warmstarting, reverse the process
@ Find central point for reduced problem
@ Expand the problem to original size (by duplicating scenarios)
@ Expand solution to primal/dual feasible and near central point
for expanded problem
@ Use this to warmstart full problem

A. Grothey, N. Chiang, C. Dent IPM for OPF




Contingency Generation

Structured IPM Crash-start

X1 [X2 [X2 [X2 [Xe [X6 [Xs
21125125125 126 1Z6 [Z6 |

Azl Ve

@ Scheme has been implemented and analysed for Stochastic
Programming

@ Extension uses sequence of progressively larger problems that

each approximate the next one in the sequence.
(Colombo, G.: Multilevel warmstart)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Contingency Generation

Reduced Tree Warmstart: Results

@ SP test problems & Capacity assignment problems
@ Ranging from 1,000 - 100,000 variables

2000

1500(

1000

s00

Number of IPM iterations Total solution time (s)

-50.5% -42.1%
— Colombo, Gondzio, G. (2009)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Multilevel Warmstart Results

Stochastic Programming Testproblems

Problem scenarios || cold 2-step multistep
exl 20000 580 327 302

40000 || 1559 766 701
ex3 10000 563 346 316

20000 || 1793 626 586
s97 10000 || 498 389 307
s98 10000 || 3189 826 481
199 10000 || 1796 375 295
Minoux 10000 | 2644 1212 1176
Jll_gva 4000 || 4981 2523 2251
T1B3 10000 995 663 637
rdc 10000 || 2098 835 749

(Solution time in seconds)

'

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Contingency Generation Modelling

Crash-Start Application: Contingency Generation

@ “n-1"- (or even “n-2"-security) requires the inclusion of many
contingency scenarios.

@ Pan-European system has 13000 nodes and 20000 lines
= Resulting SCOPF model has ~ 10 variables.

@ Only a few contingencies are critical for operation of the
system (but which ones)?

>

Contingency Generation

@ Generate contingency scenarios dynamically when needed

@ For DC OPF feasibility constraints for each contingency can
be derived explicitly, checked and included into the model
(Berry, Dunnett '89).

@ No generalisation for AC OPF (yet) - No equivalent cuts can
be derived.

-
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Contingency Generation

Contingency Generation

Prototype Algorithm:

Set up the model with a few base scenarios
Solve model to obtain power generation P*.
repeat
Check for violated contingency scenarios.
Add violated scenarios to the model
Re-solve model to obtain new power generation P*.
until no more violated contingencies
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Contingency Generation

Prototype Algorithm:

Set up the model with a few base scenarios
Solve model to obtain power generation P*.
repeat
Check for violated contingency scenarios.
Add violated scenarios to the model
Re-solve model to obtain new power generation P*.
until no more violated contingencies

@ The above scheme results in a series of SCOPF models each
with an increasing number of contingencies

@ Can add single scenarios to warmstart point
(Colombo, G.: Decomposition based warmstart)

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline obus Contingency Generation

Contingency Generation

Prototype Algorithm:

Set up the model with a few base scenarios.
Solve model to obtain power generation P*.
repeat

Check for violated contingency scenarios.

Add violated scenarios to the model.

Re-solve model to obtain new power generation P*.
until no more violated contingencies
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Contingency Generation

Prototype Algorithm:

Set up the model with a few base scenarios. 1o = ji, k = 0.
Solve model to obtain jio-center. = P, .
repeat

Check for violated contingency scenarios.

Add violated scenarios to the model.

Choose figr1 : 0 < pigr1 < pg, k — k+1
Warmstart and iterate to find j.-center. = P, .
until no more violated contingencies
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Contingency Generation

Prototype Algorithm:

Set up the model with a few base scenarios. g = ji, k = 0.
Solve model to obtain jio-center. = P,.
repeat
Check for violated contingency scenarios.
for all violated scenarios do
Set up single scenario problem with P = P, and solve for
[Lx-center
end for
Add violated scenarios to the model.
Patch together warmstart point for expanded problem.
Choose pigy1 : 0 < prpy1 < pig, k — k+1
Warmstart and iterate to find j.-center. = P, .
until no more violated contingencies
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Modelling Languages

Bottleneck: Model generation
How to generate the model in a form that is understandable by a
structure exploiting solver?

Traditionally this is done by handcrafted C/C++ code.
@ Cumbersome/Error-prone
@ Difficult to change model
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Modelling Languages

Bottleneck: Model generation

How to generate the model in a form that is understandable by a
structure exploiting solver?

Traditionally this is done by handcrafted C/C++ code.
@ Cumbersome/Error-prone
@ Difficult to change model

= use Modelling Language?
@ s aware of sparsity but not of structure
@ Can not parallelise the model generation
@ Often cannot generate entire problem on one processor

Structure Conveying Parallelisable Modelling Language
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Modelling

Structure Conveying Modelling Language: S(P)ML

S(P)ML is an extension to AMPL

@ Mimic the “block” nature of the problem using block
keyword:

block nameOfBlock{j in NODES}: {

}

@ Blocks can contain sets, variables and constraints, even nested
blocks.

@ These elements are repeated over the indexing expression
@ Scope of these elements delimited by block { ... }

@ Reference variables outside their scope using object-oriented
syntax:

name0fBlock[j] .name0OfElement
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DC-SCOPF model in S(P)ML

set BUSES; set GENERATORS;set LINES within (BUSES cross BUSES);
set CONTINGENCIES within LINES;

param V, react{LINES}, demand{BUSES};

var P{GENERATORS};

block Cont{k in CONTINGENCIES}: {
set REMLINES = LINES diff {k};
var Flow{l in REMLINES} >=-FlowLim[1],<=FlowLim[1]; delta{BUSES};
subject to KCL{b in BUSES}:
sum{g in GENERATORS:bus(g)==b} Pl[g]
= sum{l in REMLINES:source(l)==b} Flow[l]+demand[b];
subject to KVL{l in REMLINES}:
Flow[l] = -V*V/react[1]*sum{b in BUSES:source(l)=b}deltalb];

}

minimize cost sum{g in GENERATORS} P[gl*cl[g]l + P[gl*P[gl*c2[gl;
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DC-SCOPF model in S(P)ML

set BUSES; set GENERATORS;set LINES within (BUSES cross BUSES);
set CONTINGENCIES within LINES;

param V, react{LINES}, demand{BUSES};

var P{GENERATORS};

block Cont{k in CONTINGENCIES}: {
set REMLINES = LINES diff {k};
var Flow{l in REMLINES} >=-FlowLim[1],<=FlowLim[1]; delta{BUSES};
subject to KCL{b in BUSES}:
sum{g in GENERATORS:bus(g)==b} Pl[g]
= sum{l in REMLINES:source(l)==b} Flow[l]+demand[b];
subject to KVL{l in REMLINES}:
Flow[l] = -V*V/react[1]*sum{b in BUSES:source(1l)=b}deltalb];

}

minimize cost sum{g in GENERATORS} P[gl*cl[g]l + P[gl*P[gl*c2[gl;

@ Clear separation of model into global (linking) part
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DC-SCOPF model in S(P)ML

set BUSES; set GENERATORS;set LINES within (BUSES cross BUSES);
set CONTINGENCIES within LINES;

param V, react{LINES}, demand{BUSES};

var P{GENERATORS};

block Cont{k in CONTINGENCIES}: {
set REMLINES = LINES diff {k};
var Flow{l in REMLINES} >=-FlowLim[1],<=FlowLim[1]; delta{BUSES};

subject to KCL{b in BUSES}:
sum{g in GENERATORS:bus(g)==b} Pl[g]
= sum{l in REMLINES:source(1l)==b} Flow[l]+demand[b];

subject to KVL{l1 in REMLINES}:
Flow[l] = -V#V/react[1]*sum{b in BUSES:source(l)=b}deltalb];

}

minimize cost sum{g in GENERATORS} P[gl*cl[g]l + P[gl*P[gl*c2[gl;

@ Clear separation of model into global (linking) part
@ and local (repeated) parts
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DC-SCOPF model in S(P)ML

set BUSES; set GENERATORS;set LINES within (BUSES cross BUSES);
set CONTINGENCIES within LINES;

param V, react{LINES}, demand{BUSES};

var P{GENERATORS};

block Cont{k in CONTINGENCIES}: {
set REMLINES = LINES diff {k};
var Flow{l in REMLINES} >=-FlowLim[1],<=FlowLim[1]; delta{BUSES};
subject to KCL{b in BUSES}:
sum{g in GENERATORS:bus(g)==b} Pl[g]
= sum{l in REMLINES:source(l)==b} Flow[l]+demand[b];
subject to KVL{l in REMLINES}:
Flow[l] = -V*V/react[1l]*sum{b in BUSES:source(1l)=b}deltalb];

}

minimize cost sum{g in GENERATORS} P[gl*cl[g] + P[gl*P[gl*c2[gl;

@ Clear separation of model into global (linking) part
@ and local (repeated) parts
@ Can be analysed by preprocessor

A. Grothey, N. Chiang, C. Dent IPM for OPF



Outline OPF Robust OPF IPM Conti C eneratio Modelling

DC-SCOPF model in S(P)ML

set BUSES; set GENERATORS;set LINES within (BUSES cross BUSES);
set CONTINGENCIES within LINES;

param V, react{LINES}, demand{BUSES};

var P{GENERATORS};

block Cont{k in CONTINGENCIES}: {
set REMLINES = LINES diff {k};
var Flow{l in REMLINES} >=-FlowLim[1],<=FlowLim[1]; delta{BUSES};
subject to KCL{b in BUSES}:
sum{g in GENERATORS:bus(g)==b} Pl[g]
= sum{l in REMLINES:source(l)==b} Flow[l]+demand[b];
subject to KVL{l in REMLINES}:
Flow[l] = -V*V/react[1l]*sum{b in BUSES:source(1l)=b}deltalb];

}

minimize cost sum{g in GENERATORS} P[gl*cl[g] + P[gl*P[gl*c2[gl;

@ Clear separation of model into global (linking) part

@ and local (repeated) parts

@ Can be analysed by preprocessor

@ Provide construct for (multistage) stochastic programming
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DC-SCOPF model in S(P)ML

set BUSES; set GENERATORS;set LINES within (BUSES cross BUSES);
set CONTINGENCIES within LINES;

param V, react{LINES}, demand{BUSES};

var P{GENERATORS};

block Cont{k in CONTINGENCIES}: {
set REMLINES = LINES diff {k};
var Flow{l in REMLINES} >=-FlowLim[1],<=FlowLim[1]; delta{BUSES};
subject to KCL{b in BUSES}:
sum{g in GENERATORS:bus(g)==b} Pl[g]
= sum{l in REMLINES:source(l)==b} Flow[l]+demand[b];
subject to KVL{l in REMLINES}:
Flow[l] = -V*V/react[1l]*sum{b in BUSES:source(1l)=b}deltalb];

}

minimize cost sum{g in GENERATORS} P[gl*cl[g] + P[gl*P[gl*c2[gl;

@ Can be downloaded from www.maths.ed.ac.uk/ERGO
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Conclusions & Further Work

Conclusions

@ IPM can solve structured OPF problems efficiently.
Not just DC, also AC

°
@ Not just (n-1) secure, also probabilistic models
°

Warmstart and contingency generation offer potential for
further speed-up

Can be parallelised efficiently

(]

SPML offers approriate modelling environment

Further Work

@ Contingency generation is a “naive multilevel algorithm”. Can
we turn it into a proper multilevel method?

@ How to test for violated contingencies efficiently?

-
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